z-logo
open-access-imgOpen Access
Traveling waves for a microscopic model of traffic flow
Author(s) -
Wen Shen,
Karim Shikh-Khalil
Publication year - 2018
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2018108
Subject(s) - uniqueness , monotone polygon , ordinary differential equation , position (finance) , traffic flow (computer networking) , flow (mathematics) , traveling wave , physics , boundary value problem , mathematical analysis , trajectory , differential equation , mathematics , computer science , geometry , mechanics , computer security , finance , astronomy , economics
We consider the follow-the-leader model for traffic flow. The position of each car $z_i(t)$ satisfies an ordinary differential equation, whose speed depends only on the relative position $z_{i+1}(t)$ of the car ahead. Each car perceives a local density $\rho_i(t)$. We study a discrete traveling wave profile $W(x)$ along which the trajectory $(\rho_i(t),z_i(t))$ traces such that $W(z_i(t))=\rho_i(t)$ for all $i$ and $t>0$; see definition 2.2. We derive a delay differential equation satisfied by such profiles. Existence and uniqueness of solutions are proved, for the two-point boundary value problem where the car densities at $x\to\pm\infty$ are given. Furthermore, we show that such profiles are locally stable, attracting nearby monotone solutions of the follow-the-leader model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom