z-logo
open-access-imgOpen Access
Estimating the fractal dimension of sets determined by nonergodic parameters
Author(s) -
Joseph Squillace
Publication year - 2017
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2017254
Subject(s) - dynamical billiards , hausdorff dimension , mathematics , combinatorics , dimension (graph theory) , flow (mathematics) , irrational number , fractal dimension , mathematical analysis , fractal , geometry
Given fixed and irrational \begin{document} $0 , consider the billiard table \begin{document} $B_{α}$ \end{document} formed by a \begin{document} $\frac{1}{2}×1$ \end{document} rectangle with a horizontal barrier of length \begin{document} $α$ \end{document} emanating from the midpoint of a vertical side and a billiard flow with trajectory angle \begin{document} $θ$ \end{document} . In 1969, Veech introduced two subsets \begin{document} $K_{0}≤ft(θ)$ \end{document} and \begin{document} $K_{1}≤ft(θ)$ \end{document} of \begin{document} $\mathbb{R}/\mathbb{Z}$ \end{document} that are defined in terms of the continued fraction representation of \begin{document} $θ∈\mathbb{R}/\mathbb{Z}$ \end{document} , and Veech showed that these sets have Hausdorff dimension \begin{document} $0$ \end{document} when \begin{document} $θ$ \end{document} is rational. Moreover, the set \begin{document} $K_{1}≤ft(θ)$ \end{document} describes the set of all \begin{document} $α$ \end{document} such that the billiard flow on \begin{document} $B_{α}$ \end{document} in direction \begin{document} $θ$ \end{document} is nonergodic. We show that the Hausdorff dimension of the sets \begin{document} $K_{0}≤ft(θ)$ \end{document} and \begin{document} $K_{1}≤ft(θ)$ \end{document} can attain any value in \begin{document} $≤ft[0, 1]$ \end{document} by considering the continued fraction expansion of \begin{document} $θ$ \end{document} . This result resolves an analogue of work completed by Cheung, Hubert, and Pascal in which they consider, for fixed \begin{document} $α$ \end{document} , the set of \begin{document} $θ$ \end{document} such that the flow on \begin{document} $B_{α}$ \end{document} in direction \begin{document} $θ$ \end{document} is nonergodic.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom