Stability of variational eigenvalues for the fractional $p-$Laplacian
Author(s) -
Lorenzo Brasco,
Enea Parini,
Marco Squassina
Publication year - 2015
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2016.36.1813
Subject(s) - p laplacian , eigenfunction , eigenvalues and eigenvectors , mathematics , laplace operator , operator (biology) , convergence (economics) , limit (mathematics) , norm (philosophy) , pure mathematics , mathematical analysis , physics , boundary value problem , quantum mechanics , philosophy , biochemistry , chemistry , repressor , transcription factor , economics , gene , economic growth , epistemology
International audienceBy virtue of Γ−convergence arguments, we investigate the stability of variational eigenvalues associated with a given topological index for the fractional p−Laplacian operator, in the singular limit as the nonlocal operator converges to the p−Laplacian. We also obtain the convergence of the corresponding normalized eigenfunctions in a suitable fractional norm
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom