Phase models and oscillators with time delayed coupling
Author(s) -
Sue Ann Campbell,
Ilya Kobelevskiy
Publication year - 2012
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2012.32.2653
Subject(s) - bifurcation , coupling (piping) , phase (matter) , control theory (sociology) , phase locking , phase response curve , stability (learning theory) , physics , differential equation , computer science , nonlinear system , materials science , quantum mechanics , chemistry , circadian clock , biochemistry , control (management) , artificial intelligence , machine learning , metallurgy , gene
We consider two identical oscillators with time delayed coupling, modelled by a system of delay differential equations. We reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. By analyzing the phase model, we show how the time delay affects the stability of phase-locked periodic solutions and causes stability switching of in-phase and anti-phase solutions as the delay is increased. In particular, we show how the phase model can predict when the phase-flip bifurcation will occur in the original delay differential equation model. The results of the phase model analysis are applied to pairs of Morris-Lecar oscillators with diffusive or synaptic coupling and compared with numerical studies of the full system of delay differential equations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom