z-logo
open-access-imgOpen Access
Collasping behaviour of a singular diffusion equation
Author(s) -
Kin Ming Hui
Publication year - 2012
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2012.32.2165
Subject(s) - physics , monotone polygon , infinity , combinatorics , diffusion , constant (computer programming) , mathematical physics , mathematical analysis , mathematics , geometry , thermodynamics , computer science , programming language
Let $0\le u_0(x)\in L^1(\R^2)\cap L^{\infty}(\R^2)$ be such that $u_0(x) =u_0(|x|)$ for all $|x|\ge r_1$ and is monotone decreasing for all $|x|\ge r_1$ for some constant $r_1>0$ and ${ess}\inf_{\2{B}_{r_1}(0)}u_0\ge{ess} \sup_{\R^2\setminus B_{r_2}(0)}u_0$ for some constant $r_2>r_1$. Then under some mild decay conditions at infinity on the initial value $u_0$ we will extend the result of P. Daskalopoulos, M.A. del Pino and N. Sesum \cite{DP2}, \cite{DS}, and prove the collapsing behaviour of the maximal solution of the equation $u_t=\Delta\log u$ in $\R^2\times (0,T)$, $u(x,0)=u_0(x)$ in $\R^2$, near its extinction time $T=\int_{R^2}u_0dx/4\pi$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom