Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards
Author(s) -
Péter Bálint,
Imre Péter Tóth
Publication year - 2006
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2006.15.37
Subject(s) - lyapunov exponent , hamiltonian system , generalization , disjoint sets , hamiltonian (control theory) , soft materials , classical mechanics , pure mathematics , physics , mathematics , mathematical analysis , nonlinear system , quantum mechanics , mathematical optimization , nanotechnology , materials science
When considering hyperbolicity in multi-dimensional Hamiltonian sytems, especially in higher dimensional billiards, the literature usually distinguishes between dispersing and defocusing mechanisms. In this paper we give a unified treatment of these two phenomena, which also covers the important case when the two mechanisms mix. Two theorems on the hyperbolicity (i.e. non-vanishing of the Lyapunov exponents) are proven that are hoped to be applicable to a variety of situations. As an application we investigate soft billiards, that is, replace the hard core collision in dispersing billiards with disjoint spherical scatterers by motion in some spherically symmetric potential. Analogous systems in two dimensions have been widely investigated in the literature, however, we are not aware of any mathematical result in this multi-dimensional case. Hyperbolicity is proven under suitable conditions on the potential. This way we give a natural generalization of the hyperbolicity results obtained before in two dimensions for a large class of potentials.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom