Euclidean dynamics
Author(s) -
Brigitte Vallée
Publication year - 2006
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2006.15.281
Subject(s) - euclidean geometry , dynamical systems theory , mathematics , dirichlet distribution , class (philosophy) , divisor (algebraic geometry) , euclidean domain , distribution (mathematics) , dynamics (music) , dirichlet series , pure mathematics , discrete mathematics , computer science , euclidean distance matrix , mathematical analysis , physics , geometry , quantum mechanics , artificial intelligence , acoustics , boundary value problem
We study a general class of Euclidean algorithms which compute the greatest common divisor [gcd], and we perform probabilistic analyses of their main parameters. We view an algorithm as a dynamical system restricted to rational inputs, and combine tools imported from dynamics, such as transfer operators, with various tools of analytic combinatorics: generating functions, Dirichlet series, Tauberian theorems, Perron’s formula and quasi-powers theorems. Such dynamical analyses can be used to perform the average-case analysis of algorithms, but also (dynamical) analysis in distribution.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom