z-logo
open-access-imgOpen Access
Asymptotic measures and distributions of Birkhoff averages with respect to Lebesgue measure
Author(s) -
Todd Young
Publication year - 2002
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2003.9.359
Subject(s) - almost everywhere , mathematics , measure (data warehouse) , lebesgue measure , attractor , lebesgue–stieltjes integration , invariant measure , dominated convergence theorem , pointwise , σ finite measure , distribution (mathematics) , probability measure , lebesgue integration , discrete measure , pointwise convergence , ergodic theory , mathematical analysis , rate of convergence , borel measure , convergence tests , computer science , channel (broadcasting) , computer network , daniell integral , database , approx , integral equation , singular integral , operating system
We consider Birkhoff averages of an observable $\phi$ along orbits of a continuous map $f:X \rightarrow X$ with respect to a non-invariant measure $m$. In the simple case where the averages converge $m$-almost everywhere, one may discuss the distribution of values of the average in a natural way. We extend this analysis to the case where convergence does not hold $m$-almost everywhere. The case that the averages converge $m$-almost everywhere is shown to be related to the recently defined notion of "predictable" behavior, which is a condition on the existence of pointwise asymptotic measures (SRB measures). A heteroclinic attractor is an example of a system which is not predictable. We define a more general notion called "statistically predictable" behavior which is weaker than predictability, but is strong enough to allow meaningful statistical properties, i.e. distribution of Birkhoff averages, to be analyzed. Statistical predictability is shown to imply the existence of an asymptotic measure, but not vice versa. We investigate the relationship between the various notions of asymptotic measures and distributions of Birkhoff average. Analysis of the heteroclinic attractor is used to illustrate the applicability of the concepts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom