z-logo
open-access-imgOpen Access
Global structure of 2-D incompressible flows
Author(s) -
Tian Ma,
Shouhong Wang
Publication year - 2001
Publication title -
discrete and continuous dynamical systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.289
H-Index - 70
eISSN - 1553-5231
pISSN - 1078-0947
DOI - 10.3934/dcds.2001.7.431
Subject(s) - ergodic theory , vector field , mathematics , divergence theorem , saddle point , saddle , domain (mathematical analysis) , divergence (linguistics) , manifold (fluid mechanics) , solenoidal vector field , pure mathematics , fundamental vector field , mathematical analysis , brouwer fixed point theorem , geometry , fixed point theorem , algebra over a field , mechanical engineering , mathematical optimization , linguistics , philosophy , lie conformal algebra , adjoint representation of a lie algebra , engineering
The main objective of this article is to classify the structure of divergence-free vector fields on general two-dimensional compact manifold with or without boundaries. First we prove a Limit Set Theorem, Theorem 2.1, a generalized version of the Poincare-Bendixson to divergence-free vector fields on 2-manifolds of nonzero genus. Namely, the $\omega$ (or $\alpha$) limit set of a regular point of a regular divergence-free vector field is either a saddle point, or a closed orbit, or a closed domain with boundaries consisting of saddle connections. We call the closed domain ergodic set. Then the ergodic set is fully characterized in Theorem 4.1 and Theorem 5.1. Finally, we obtain a global structural classification theorem (Theorem 3.1), which amounts to saying that the phase structure of a regular divergence-free vector field consists of finite union of circle cells, circle bands, ergodic sets and saddle connections.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom