z-logo
open-access-imgOpen Access
A class of skew-cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ with derivation
Author(s) -
Amit Sharma,
Maheshanand Bhaintwal
Publication year - 2018
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2018043
Subject(s) - mathematics , skew , automorphism , combinatorics , polynomial ring , cyclic code , discrete mathematics , block code , linear code , polynomial , decoding methods , algorithm , physics , mathematical analysis , astronomy
In this paper, we study a class of skew-cyclic codes using a skew polynomial ring over \begin{document}$R = \mathbb{Z}_4+u\mathbb{Z}_4;u^2 = 1$ \end{document} , with an automorphism \begin{document}$θ$ \end{document} and a derivation \begin{document}$δ_θ$ \end{document} . We generalize the notion of cyclic codes to skew-cyclic codes with derivation, and call such codes as \begin{document}$δ_θ$ \end{document} -cyclic codes. Some properties of skew polynomial ring \begin{document}$R[x, θ, {δ_θ}]$ \end{document} are presented. A \begin{document}$δ_θ$ \end{document} -cyclic code is proved to be a left \begin{document}$R[x, θ, {δ_θ}]$ \end{document} -submodule of \begin{document}$\frac{R[x, θ, {δ_θ}]}{\langle x^n-1 \rangle}$ \end{document} . The form of a parity-check matrix of a free \begin{document}$δ_θ$ \end{document} -cyclic codes of even length \begin{document}$n$ \end{document} is presented. These codes are further generalized to double \begin{document}$δ_θ$ \end{document} -cyclic codes over \begin{document}$R$ \end{document} . We have obtained some new good codes over \begin{document}$\mathbb{Z}_4$ \end{document} via Gray images and residue codes of these codes. The new codes obtained have been reported and added to the database of \begin{document}$\mathbb{Z}_4$ \end{document} -codes [ 2 ].

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom