Cyclic and BCH codes whose minimum distance equals their maximum BCH bound
Author(s) -
José Joaquín Bernal,
Diana H. Bueno-Carreño,
Juan Jacobo Simón
Publication year - 2016
Publication title -
advances in mathematics of communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.601
H-Index - 26
eISSN - 1930-5346
pISSN - 1930-5338
DOI - 10.3934/amc.2016018
Subject(s) - bch code , mathematics , minimum distance , abelian group , polynomial code , polynomial , discrete mathematics , combinatorics , reed–solomon error correction , binary code , binary number , linear code , block code , algorithm , error detection and correction , arithmetic , decoding methods , mathematical analysis
In this paper we study the family of cyclic codes such that its minimum distance reaches the maximum of its BCH bounds. We also show a way to construct cyclic codes with that property by means of computations of some divisors of a polynomial of the form $x^n-1$. We apply our results to the study of those BCH codes $C$, with designed distance $\delta$, that have minimum distance $d(C)=\delta$. Finally, we present some examples of new binary BCH codes satisfying that condition. To do this, we make use of two related tools: the discrete Fourier transform and the notion of apparent distance of a code, originally defined for multivariate abelian codes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom