z-logo
open-access-imgOpen Access
The Individual Virtual Eye: a Computer Model for Advanced Intraocular Lens Calculation
Author(s) -
Jens Einighammer,
Theo Oltrup,
Thomas Bende,
Benedikt J. Jean
Publication year - 2009
Publication title -
journal of optometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.844
H-Index - 25
eISSN - 1888-4296
pISSN - 1989-1342
DOI - 10.3921/joptom.2009.70
Subject(s) - paraxial approximation , wavefront , ray tracing (physics) , optics , spherical aberration , intraocular lens , computer science , human eye , intraocular lenses , optical aberration , lens (geology) , zernike polynomials , geometrical optics , physics , beam (structure)
PurposeTo describe the individual virtual eye, a computer model of a human eye with respect to its optical properties. It is based on measurements of an individual person and one of its major application is calculating intraocular lenses (IOLs) for cataract surgery.MethodsThe model is constructed from an eye's geometry, including axial length and topographic measurements of the anterior corneal surface. All optical components of a pseudophakic eye are modeled with computer scientific methods. A spline-based interpolation method efficiently includes data from corneal topographic measurements. The geometrical optical properties, such as the wavefront aberration, are simulated with real ray-tracing using Snell's law. Optical components can be calculated using computer scientific optimization procedures. The geometry of customized aspheric IOLs was calculated for 32 eyes and the resulting wavefront aberration was investigated.ResultsThe more complex the calculated IOL is, the lower the residual wavefront error is. Spherical IOLs are only able to correct for the defocus, while toric IOLs also eliminate astigmatism. Spherical aberration is additionally reduced by aspheric and toric aspheric IOLs. The efficient implementation of time-critical numerical ray-tracing and optimization procedures allows for short calculation times, which may lead to a practicable method integrated in some device.ConclusionsThe individual virtual eye allows for simulations and calculations regarding geometrical optics for individual persons. This leads to clinical applications like IOL calculation, with the potential to overcome the limitations of those current calculation methods that are based on paraxial optics, exemplary shown by calculating customized aspheric IOLs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom