z-logo
open-access-imgOpen Access
Some results on prime rings with multiplicative derivations
Author(s) -
Gurninder S. Sandhu,
Didem KARALARLIOĞLU CAMCI
Publication year - 2020
Publication title -
turkish journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.454
H-Index - 27
eISSN - 1303-6149
pISSN - 1300-0098
DOI - 10.3906/mat-2002-24
Subject(s) - multiplicative function , combinatorics , automorphism , mathematics , center (category theory) , type (biology) , prime ring , physics , prime (order theory) , crystallography , mathematical analysis , chemistry , ecology , biology
Let $R$ be a prime ring with center $Z R $ and an automorphism $\alpha.$ A mapping $\delta:R\to R$ is called multiplicative skew derivation if $\delta xy =\delta x y+ \alpha x \delta y $ for all $x,y\in R$ and a mapping $F:R\to R$ is said to be multiplicative generalized -skew derivation if there exists a unique multiplicative skew derivation $\delta$ such that $F xy =F x y+\alpha x \delta y $ for all $x,y\in R.$ In this paper, our intent is to examine the commutativity of $R$ involving multiplicative generalized -skew derivations that satisfy the following conditions: i $F x^{2} +x\delta x =\delta x^{2} +xF x $, ii $F x\circ y =\delta x\circ y \pm x\circ y$, iii $F [x,y] =\delta [x,y] \pm [x,y]$, iv $F x^{2} =\delta x^{2} $, v $F [x,y] =\pm x^{k}[x,\delta y ]x^{m}$, vi $F x\circ y =\pm x^{k} x\circ\delta y x^{m}$, vii $F [x,y] =\pm x^{k}[\delta x ,y]x^{m}$, viii $F x\circ y =\pm x \delta x \circ y x^{m}$ for all $x,y\in R.$

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom