On composition factors in modules over some group rings
Author(s) -
Martyn R. Dixon,
Leonid A. Kurdachenko,
Igor Ya. Subbotin
Publication year - 2019
Publication title -
turkish journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.454
H-Index - 27
eISSN - 1303-6149
pISSN - 1300-0098
DOI - 10.3906/mat-1908-65
Subject(s) - dimension (graph theory) , composition (language) , mathematics , quotient , group (periodic table) , pure mathematics , finite group , factor (programming language) , combinatorics , algebra over a field , discrete mathematics , computer science , physics , philosophy , linguistics , programming language , quantum mechanics
The aim of this paper is to prove the following result: Let G be an FC-hypercentral group and let A have a finite FG-composition series. Then A contains two FG-submodules B,C such that A = B ⊕ C, where each FG-composition factor of B has finite F -dimension and each FG-composition factor of C has infinite F -dimension. Thishasconsequencesfor FG-modules whose proper submodules all have finite F -dimensionandforthose FG-modules whose proper quotients all have finite F -dimension.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom