BBO algorithm-based tuning of PID controller for speed control of synchronous machine
Author(s) -
Gowrishankar Kasilingam,
Jagadeesh Pasupuleti
Publication year - 2016
Publication title -
turkish journal of electrical engineering and computer sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.225
H-Index - 30
eISSN - 1303-6203
pISSN - 1300-0632
DOI - 10.3906/elk-1501-46
Subject(s) - pid controller , control theory (sociology) , computer science , electronic speed control , control engineering , controller (irrigation) , algorithm , control (management) , engineering , artificial intelligence , temperature control , electrical engineering , agronomy , biology
A biogeography-based optimization (BBO) algorithm was used for tuning the parameters of a proportional integral derivative (PID) controller-based power system stabilizer (PSS). The proposed method minimizes the low frequency electromechanical oscillations (0.1–2.5 Hz) and enhances the stability of the power system by optimally tuning the PID parameters. This was achieved by minimizing the objective function of the integral square error for various disturbances. The performance of the BBO algorithm was tested on a single machine infinite bus system for a different range of operating conditions and the results were compared with particle swam optimization, adaptation law, and conventional PSS. The result analysis concluded that the BBO algorithm damps out the low frequency oscillations in the rotor of the synchronous machine effectively when compared to other methods. The algorithms were simulated with MATLAB/Simulink. The results from the simulation showed that the proposed controller yields a fast convergence rate and better dynamic performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom