z-logo
open-access-imgOpen Access
Glycoprotein screening in colorectal cancer based on differentially expressed Tn antigen
Author(s) -
Hongyun Wei,
Zongyong Cheng,
Chunhui Ouyang,
Yu Zhang,
Yanyan Hu,
Shuijiao Chen,
Chunlian Wang,
Fanggen Lu,
Jie Zhang,
Yongjun Wang,
Xiaowei Liu
Publication year - 2016
Publication title -
oncology reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.094
H-Index - 96
eISSN - 1791-2431
pISSN - 1021-335X
DOI - 10.3892/or.2016.4937
Subject(s) - glycoprotein , colorectal cancer , biology , oncogene , immunohistochemistry , kegg , cancer , cancer research , microbiology and biotechnology , antigen , gene , gene expression , cell cycle , gene ontology , immunology , biochemistry , genetics
Colorectal cancer (CRC) is one of the most common cancers worldwide, and the identification of new biomarkers for CRC is valuable for its diagnosis and treatment. We aimed to screen differentially expressed glycoproteins (especially O-glycoproteins) and to identify diagnostic or therapeutic candidates for colorectal cancer (CRC) based on different Tn antigen expression levels. Fresh cancer tissues and adjacent healthy tissues were obtained from CRC patients and classified into three groups based on their Tn antigen expression: CRC with negative Tn expression (CRC Tn‑), CRC with positive Tn expression (CRC Tn+) and normal control without Tn expression (NC). Protein extractions were separated and identified by iTRAQ technology. Glycoproteins and O-glycoproteins were selected using UniProt and DAVID. Deep bioinformatic analysis, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KO), was used to annotate this O-glycoprotein interaction network. Subsequently, two O‑glycoproteins were verified by western blotting and immunohistochemistry in either LS174T cells or CRC tissues. We found that 330 differentially expressed proteins were identified by iTRAQ between CRC Tn‑ and NC tissues, 317 between CRC Tn+ and NC tissues, and 316 between CRC Tn‑ and Tn+ tissues. Of the 316 proteins, 55 glycoproteins and 19 O‑glycoproteins were identified and analyzed via deep informatics. Namely, different Tn antigen expression levels in CRC led to differential protein expression patterns, especially for glycoproteins and O‑glycoproteins. Decorin and SORBS1, two representative functional O-glycoproteins, were significantly downregulated in the CRC Tn+ tissues compared with the level in the CRC Tn‑ or NC tissues. Based on this deep bioinformatic analysis, Decorin and SORBS1 are hypothesized to be involved in the TGF‑β and PPAR‑γ signaling pathways, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom