Triptolide exerts pro-apoptotic and cell cycle arrest activity on drug-resistant human lung cancer A549/Taxol cells via modulation of MAPK and PI3K/Akt signaling pathways
Author(s) -
Chen Xie,
Ping Zhou,
Jian Zuo,
Xiang Li,
Yong Chen,
Jianwei Chen
Publication year - 2016
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2016.5099
Subject(s) - triptolide , cell cycle , apoptosis , protein kinase b , pi3k/akt/mtor pathway , oncogene , mapk/erk pathway , cell cycle checkpoint , molecular medicine , cancer research , cancer , a549 cell , chemistry , lung cancer , cell , signal transduction , pharmacology , medicine , biochemistry
Multidrug resistance (MDR) is a major obstacle in the effective chemotherapeutic treatment of cancers. Triptolide (TPL) is a diterpenoid isolated from Tripterygium wilfordii Hook. f., a traditional Chinese medicine. It was demonstrated in our previous study that TPL exerts anti-MDR cancers on various MDR cell lines (including A549/Taxol, MCF-7/ADR and Bel7402/5-Fu). The present study was designed to investigate its anti-proliferative activity on A549/Taxol cells, and explore the underlying mechanism of action. The anti-proliferative activity of TPL on A549/Taxol cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Its pro-apoptosis and cell cycle arrest activities were analyzed by flow cytometry. Western blot assay was employed to investigate the levels of mitogen-activated protein kinases (MAPKs) and apoptosis-related proteins in cells. TPL efficiently suppressed the proliferation of A549/Taxol cells. Co-treatment with MAPK inhibitors in the MTT assay indicated that the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) pathways were involved in the process. Upregulation of p-p38, p-ERK, p-GSK-3β, Bax and cleaved caspases-3 and -9, and downregulation of p-JNK, p-Akt and Bcl-2 were observed upon treatment with TPL in the A549/Taxol cells. The results from flow cytometry assay revealed that TPL induced apoptosis and S-phase arrest in A549/Taxol cells. This occurred as a result of the upregulation of p-ERK and p-GSK-3β, and the downregulation of p-JNK and p-Akt, and was responsible for the subsequent anti-proliferative activity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom