Apigenin suppresses colorectal cancer cell proliferation, migration and invasion via inhibition of the Wnt/β-catenin signaling pathway
Author(s) -
Min Xu,
Shusheng Wang,
YU SONG,
Jianhua Yao,
Kun Huang,
Xiaojue Zhu
Publication year - 2016
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2016.4331
Subject(s) - wnt signaling pathway , apigenin , cancer research , cell growth , signal transduction , cell cycle , carcinogenesis , microbiology and biotechnology , catenin , biology , oncogene , organoid , chemistry , cell , cancer , biochemistry , genetics , flavonoid , antioxidant
Abnormal activation of the Wnt/β-catenin signaling pathway has a significant role in human tumorigenesis. The search for potential anticancer drugs has included widespread screening of inhibitors of the Wnt signaling pathway. Recently, one of the most common flavonoids, apigenin, demonstrated potential anti-tumor effects on multiple human cancer cell lines, with low cytotoxicity and no mutagenic activity. However, the association between apigenin and the Wnt/β-catenin signaling pathway remains to be elucidated. The results of wound healing and Transwell invasion assays revealed that apigenin was able to significantly suppress colorectal cancer cell proliferation, migration and invasion in a dose-dependent manner. An organoid culture assay revealed that apigenin was also able to suppress the growth of intestinal organoids. Furthermore, apigenin inhibited β-catenin/T-cell factor/lymphoid enhancer factor signaling activation, which was induced by LiCl in a dose-dependent manner. This inhibited β-catenin nuclear entry, and therefore the expression of Wnt downstream target genes. In conclusion, apigenin significantly suppressed colorectal cancer cell proliferation, migration, invasion and organoid growth by inhibiting the Wnt/β-catenin signaling pathway.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom