z-logo
open-access-imgOpen Access
Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells
Author(s) -
Tae Eun Guon,
Ha Sook Chung
Publication year - 2016
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2016.4247
Subject(s) - hyperoside , rutin , apoptosis , cancer cell , pharmacology , chemistry , biology , biochemistry , cancer , genetics , antioxidant
The present study demonstrates the mechanism of 2 flavonol glycosides, hyperoside and rutin, in the induction of apoptosis in HT-29 human colon cancer cells through the bioactivity-guided fractionation and isolation method. The chemical structure of hyperoside and rutin, isolated from the roots of Nelumbo nucifera , were established using extensive 1- and 2-dimensional nuclear magnetic resonance experiments and absolute high resolution fast-atom bombardment mass spectrometry, ultraviolet-visible and Fourier transform infrared spectroscopy spectral analytical methods. The treatment of HT-29 colon cancer cells with hyperoside and rutin significantly decreased cell viability in a dose-dependent manner. The concomitant activation of the mitochondria-dependent apoptotic pathway of hyperoside and rutin occurred via modulation of Bcl-2-associated X protein and B-cell lymphoma 2 expression, resulting in the activation of cleaved caspases-3, -8 and -9 and cleaved poly-(ADP-ribose) polymerase. The findings of the present study indicate that hyperoside and rutin induce apoptosis in HT-29 human colon cancer cells, and that this phenomenon is mediated via the death receptor-mediated and mitochondria-mediated apoptotic pathways. These results suggest that hyperoside and rutin may be useful in the development of a colon cancer therapy protocol.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom