z-logo
open-access-imgOpen Access
Downregulation of CD147 by chitooligosaccharide inhibits MMP-2 expression and suppresses the metastatic potential of human gastric cancer
Author(s) -
Zhiguo Luo,
Xiaoxia Dong,
Qing Ke,
Qiwen Duan,
Li Shen
Publication year - 2014
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2014.2115
Subject(s) - oncogene , metastasis , cancer , matrix metalloproteinase , downregulation and upregulation , cancer research , cell cycle , cancer cell , western blot , molecular medicine , chemistry , zymography , mtt assay , apoptosis , microbiology and biotechnology , biology , medicine , biochemistry , gene
Metastasis is considered to be the major cause of mortality in patients with cancer, and gastric cancer is a highly metastatic cancer. In the present study, the anti-metastatic activity of chitooligosaccharide (COS) in human gastric cancer cells and its underlying mechanism were investigated. It was found that COS significantly inhibited SGC-7901 cell proliferation and metastasis in a dose-dependent manner, as observed by MTT, wound-healing and Transwell assays. Quantitative real-time polymerase chain reaction and western blot analysis indicated that COS could decrease the expression of cluster of differentiation 147 (CD147) and subsequently reduce matrix metalloproteinase-2 (MMP-2) expression. A clear dose-dependent inhibition of MMP-2 activity was also observed in SGC-7901 cells following treatment with COS in gelatin zymography experiments. Furthermore, overexpression of CD147 (when transfected with pEGFP-C1 plasmid) in SGC-7901 cells partially protected against COS-induced inhibition of MMP-2. The results of the present study demonstrated the potential of COS in suppressing gastric cancer metastasis, and that the CD147/MMP-2 pathway may be involved as the key mechanism of its anti-metastatic effect.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom