Downregulation of CD147 by chitooligosaccharide inhibits MMP-2 expression and suppresses the metastatic potential of human gastric cancer
Author(s) -
Zhiguo Luo,
Xiaoxia Dong,
Qing Ke,
Qiwen Duan,
Li Shen
Publication year - 2014
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2014.2115
Subject(s) - oncogene , metastasis , cancer , matrix metalloproteinase , downregulation and upregulation , cancer research , cell cycle , cancer cell , western blot , molecular medicine , chemistry , zymography , mtt assay , apoptosis , microbiology and biotechnology , biology , medicine , biochemistry , gene
Metastasis is considered to be the major cause of mortality in patients with cancer, and gastric cancer is a highly metastatic cancer. In the present study, the anti-metastatic activity of chitooligosaccharide (COS) in human gastric cancer cells and its underlying mechanism were investigated. It was found that COS significantly inhibited SGC-7901 cell proliferation and metastasis in a dose-dependent manner, as observed by MTT, wound-healing and Transwell assays. Quantitative real-time polymerase chain reaction and western blot analysis indicated that COS could decrease the expression of cluster of differentiation 147 (CD147) and subsequently reduce matrix metalloproteinase-2 (MMP-2) expression. A clear dose-dependent inhibition of MMP-2 activity was also observed in SGC-7901 cells following treatment with COS in gelatin zymography experiments. Furthermore, overexpression of CD147 (when transfected with pEGFP-C1 plasmid) in SGC-7901 cells partially protected against COS-induced inhibition of MMP-2. The results of the present study demonstrated the potential of COS in suppressing gastric cancer metastasis, and that the CD147/MMP-2 pathway may be involved as the key mechanism of its anti-metastatic effect.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom