TLR4/MD‑2 is a receptor for extracellular nucleophosmin 1
Author(s) -
Kota Nakatomi,
Hikari Ueno,
Y Ishikawa,
Ronny Salim,
Yuki Mori,
Issey Kanemoto,
Salunya Tancharoen,
Kiyoshi Kikuchi,
Naoki Miura,
Taketo Omori,
Emiko OkudaAshitaka,
Kiyoshi Matsumura,
Hitoshi Imaizumi,
Yoshihiro Motomiya,
Ikuro Maruyama,
Koichi Kawahara
Publication year - 2020
Publication title -
biomedical reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.607
H-Index - 25
eISSN - 2049-9442
pISSN - 2049-9434
DOI - 10.3892/br.2020.1397
Subject(s) - nucleophosmin , microbiology and biotechnology , biology , tlr4 , extracellular , receptor , signal transduction , toll like receptor , cancer research , biochemistry , innate immune system , myeloid leukemia
Nucleophosmin 1 (NPM1) primarily localizes to the nucleus and is passively released into the extracellular milieu by necrotic or damaged cells, or is secreted by monocytes and macrophages. Extracellular NPM1 acts as a potent inflammatory stimulator by promoting cytokine production [e.g., tumor necrosis factor-α (TNF-α)], which suggests that NPM1 acts as a damage-associated molecular pattern. However, the receptor of NPM1 is unknown. Evidence indicates that DAMPs, which include high mobility group box 1 and histones, may bind Toll-like receptors (TLRs). In the present study, it was shown that NPM1 signaling was mediated via the TLR4 pathway, which suggests that TLR4 is an NPM1 receptor. TLR4 binds myeloid differentiation protein-2 (MD-2), which is essential for intracellular signaling. Furthermore, the TLR4 antagonist, LPS-Rhodobacter sphaeroides (an MD-2 antagonist) and TAK-242 (a TLR4 signaling inhibitor) significantly inhibited NPM1-induced TNF-α production by differentiated THP-1 cells as well as reducing ERK1/2 activation. Far-western blot analysis revealed that NPM1 directly bound MD-2. Thus, the results of the present study provide compelling evidence that TLR4 binds NPM1, and it is hypothesized that inhibiting NPM1 activity may serve as a novel strategy for treating TLR4-related diseases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom