NADPH oxidase inhibitor, diphenyleneiodonium prevents necroptosis in HK-2 cells
Author(s) -
Wei Dong,
Zhilian Li,
Yuanhan Chen,
Li Zhang,
Zhiming Ye,
Huaban Liang,
Ruizhao Li,
Lixia Xu,
Bin Zhang,
Shuangxin Liu,
Weidong Wang,
Chunling Li,
Jialun Luo,
Wei Shi,
Xinling Liang
Publication year - 2017
Publication title -
biomedical reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.607
H-Index - 25
eISSN - 2049-9442
pISSN - 2049-9434
DOI - 10.3892/br.2017.948
Subject(s) - necroptosis , propidium iodide , nadph oxidase , apoptosis , programmed cell death , microbiology and biotechnology , kinase , biology , flow cytometry , reactive oxygen species , biochemistry
The aim of the present study was to investigate the protective effect of the NADPH oxidase inhibitor, diphenyleneiodonium (DPI) against necroptosis in renal tubular epithelial cells. A necroptosis model of HK-2 cells was established using tumor necrosis factor-α, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone and antimycin A (collectively termed TZA), as in our previous research. The necroptosis inhibitor, necrostatin-1 (Nec-1) or the NADPH oxidase inhibitor, DPI were administered to the necroptosis model. Production of reactive oxygen species (ROS) was detected by dichlorodihydrofluorescein diacetate in the different groups, and the manner of cell death was identified by flow cytometry. Western blot analysis was used to determine the levels of phosphorylation of receptor-interacting protein kinase 3 (RIP-3) and mixed lineage kinase domain-like (MLKL), which are essential to necroptosis. The results revealed that TZA increased the percentages of propidium iodide-positive HK-2 cells from 1.22±0.69 to 8.98±0.73% (P<0.001), and augmented the phosphorylation of RIP-3 and MLKL. ROS levels were increased in the TZA group compared with the control group (27.74±1.60×10 4 vs. 18.51±1.10×10 4 , respectively; P<0.001), and could be inhibited by Nec-1 (TZA + Nec-1 group, 22.90±2.22×10 4 vs. TZA group, 27.74±1.60×10 4 ; P=0.01). DPI decreased ROS production (TZA + DPI group, 22.13±1.86×10 4 vs. TZA group, 27.74±1.60×10 4 ; P<0.001) and also reduced the proportions of necrosis in the necroptosis model (TZA + DPI group, 4.40±1.51% vs. TZA group, 8.98±0.73%; P<0.001). Phosphorylated RIP-3 and MLKL were also decreased by DPI treatment. The results indicate that ROS production increases in HK-2 cells undergoing necroptosis, and that the NADPH oxidase inhibitor, DPI may protect HK-2 cells from necroptosis via inhibition of ROS production.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom