Resistin-induced cardiomyocyte hypertrophy is inhibited by apelin through the inactivation of extracellular signal-regulated kinase signaling pathway in H9c2 embryonic rat cardiomyocytes
Author(s) -
Jian-wei Luo,
Xian Zheng,
Guanchang Cheng,
Qunhui Ye,
Yongzhi Deng,
Lin Wu
Publication year - 2016
Publication title -
biomedical reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.607
H-Index - 25
eISSN - 2049-9442
pISSN - 2049-9434
DOI - 10.3892/br.2016.749
Subject(s) - embryonic stem cell , resistin , microbiology and biotechnology , signal transduction , kinase , extracellular , extracellular signal regulated kinases , oncogene , apelin , medicine , endocrinology , biology , cell cycle , chemistry , protein kinase a , cancer , biochemistry , receptor , diabetes mellitus , adipokine , gene , insulin resistance
It has been reported that resistin induces, whereas apelin inhibits cardiac hypertrophy. However, the underlying molecular mechanisms of apelin inhibiting resistin-induced cardiac hypertrophy remain unclear. The aim of the current study is to investigate the effects of apelin on resistin-induced cardiomyocyte hypertrophy and elucidate the underlying molecular mechanism. H9c2 cells were used in the present study, and cell surface area and protein synthesis were evaluated. Reverse transcription-quantitative polymerase chain reaction was performed to analyze the expression levels of hypertrophic markers, brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC). In addition, western blotting was conducted to examine phosphorylation of extracellular signal-regulated kinase (ERK)1/2. Following treatment of H9c2 cells with resistin, cell surface area, protein synthesis, and BNP and β-MHC mRNA expression levels were increased. Subsequent to co-treatment of H9c2 cells with apelin and resistin, lead to the inhibition of resistin-induced hypertrophic effects by apelin. In addition, treatment with resistin increased phosphorylation of ERK1/2, whereas pretreatment with apelin decreased phosphorylation of ERK1/2, which was increased by resistin. These results indicate that resistin-induced cardiac hypertrophy is inhibited by apelin via inactivation of ERK1/2 cell signaling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom