z-logo
open-access-imgOpen Access
Fast method for skeletal tissue gene expression analysis
Author(s) -
Luca Dalle Carbonare,
Maria Teresa Vilei,
Chiara Stranieri,
Giulio Innamorati,
Antonio Rosato,
Elisa Boldrin,
Stefania Sella,
Sandro Giannini,
Maria Teresa Valenti
Publication year - 2016
Publication title -
biomedical reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.607
H-Index - 25
eISSN - 2049-9442
pISSN - 2049-9434
DOI - 10.3892/br.2016.699
Subject(s) - gene expression , rna , biology , bone tissue , transcriptome , gene , microbiology and biotechnology , computational biology , genetics , anatomy
Several chronic diseases have been associated with bone alteration in the last few years. Despite the wealth of information provided by the analysis of the transcriptome in affected tissues, only a limited number of studies evaluated gene expression in bone tissue due to the difficulty to obtain high quality RNA. Therefore, skeletal pathologies have been often associated to a defective maturation process that occurs during recruitment of progenitor stem cells. In order to explore the possibility of analysing the gene expression during osteogenic differentiation in skeletal tissue, a single-step method to extract well-preserved RNA from bone specimens was performed. A comparison between this technique and a traditional method was made by analysing the quality and yield of RNA obtained. In addition, RNAs were assayed by reverse transcription-quantitative polymerase chain reaction to analyse the expression levels of the bone genes associated with the differentiation process in a mouse model. The present data showed that good quality RNA can be obtained from bone tissue by a simple single-step method allowing the expression analysis of the genes encoded by skeletal tissue. In conclusion, the present study allows the possibility to easily obtain good quality RNA from bone tissue that is suitable for gene expression studies of bone diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom