Calcium butyrate: Anti-inflammatory effect on experimental colitis in rats and antitumor properties
Author(s) -
Giuseppe Celasco,
Luigi Moro,
Caterina Aiello,
Katia Mangano,
Angela Milasi,
Cinzia Quattrocchi,
Roberto Di Marco
Publication year - 2014
Publication title -
biomedical reports
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.607
H-Index - 25
eISSN - 2049-9442
pISSN - 2049-9434
DOI - 10.3892/br.2014.273
Subject(s) - molecular medicine , butyrate , colitis , calcium , oncogene , apoptosis , cell cycle , cancer research , pharmacology , chemistry , inflammation , medicine , immunology , biochemistry , fermentation
Butyric acid is a physiological component of the colonic environment that possesses anti-inflammatory and antitumor properties, among others. However, little is known regarding its effects following direct application on the colonic surface. This study was conducted to investigate the topical anti-inflammatory effect of calcium butyrate in chemically-induced colitis in rats and to evaluate its antitumor properties in vivo and in vitro . The anti-inflammatory activity of calcium butyrate was evaluated in dinitrobenzene sulfonic acid-induced colitis in rats, following intracolonic instillation for 6 consecutive days and its in vivo antitumor activity was evaluated in F344 rats with the azoxymethane (AOM)-induced aberrant crypt foci (AFC) test, following intracolonic instillation for 4 weeks. The in vitro antiproliferative activity was assessed by incubation for 48 h with the HT29, SW620 and HCT116 intestinal tumour cell lines to evaluate the rate of 3 H-thymidine uptake. In dinitrobenzene-induced colitis, the intracolonic instillation of calcium butyrate completely prevented body weight reduction in the animals and counteracted the local noxious effects of the irritant by reducing colon edema (-22.7%, P=0.048) and the area of mucosal damage (-48%, P=0.045). In the AOM-induced AFC test, the intracolonic instillation of calcium butyrate significantly reduced the number of AFC in the entire colon (-22.7%, P<0.05). Calcium butyrate, following incubation with the HT29, SW620 and HCT116 tumour cell lines, induced a significant antiproliferative, dose-dependent effect (P=0.046 to P=0.002) in all three strains, as measured by the reduction in 3 H-thymidine uptake. Calcium butyrate directly applied to the mucosa of the rat colon was able to ameliorate colonic inflammation, suggesting a possible beneficial role in the treatment of inflammatory colon diseases. Moreover, calcium butyrate exhibited notable antitumor effects in vivo and in vitro ; however, their clinical relevance requires confirmation by additional clinical investigations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom