A Modified Conjugate Gradient Formula for Back Propagation Neural Network Algorithm
Author(s) -
Abbas Al-Bayati,
Najmaddin Sulaiman,
Gulnar W. Sadiq
Publication year - 2009
Publication title -
journal of computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.161
H-Index - 28
eISSN - 1552-6607
pISSN - 1549-3636
DOI - 10.3844/jcssp.2009.849.856
Subject(s) - computer science , conjugate gradient method , algorithm , artificial neural network , backpropagation , conjugate , gradient method , artificial intelligence , mathematics , mathematical analysis
Problem statement: The Conjugate Gradient (CG) algorithm which usually used for solving nonlinear functions is presented and is combined with the modified Back Propagation (BP) algorithm yielding a new fast training multilayer algorithm. Approach: This study consisted of determination of new search directions by exploiting the information calculated by gradient descent as well as the previous search direction. The proposed algorithm improved the training efficiency of BP algorithm by adaptively modifying the initial search direction. Results: Performance of the proposed algorithm was demonstrated by comparing it with the Neural Network (NN) algorithm for the chosen test functions. Conclusion: The numerical results showed that number of iterations required by the proposed algorithm to converge was less than the both standard CG and NN algorithms. The proposed algorithm improved the training efficiency of BP-NN algorithms by adaptively modifying the initial search direction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom