Lizard Learning Algorithm for Invariant Pattern Recognition
Author(s) -
Mallikarjuna Rao Gundavarapu,
G.R. Mahendra Babu,
G. Vijaya Kumari
Publication year - 2007
Publication title -
journal of computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.161
H-Index - 28
eISSN - 1552-6607
pISSN - 1549-3636
DOI - 10.3844/jcssp.2007.84.87
Subject(s) - computer science , invariant (physics) , algorithm , artificial intelligence , pattern recognition (psychology) , mathematics , mathematical physics
Researches are keen to know astonishing and intricate details of the nature. Each creature has its own admiring abilities and performs their routine task in more efficient manner. The bug navigation system has drawn keen attention among research community to know how they are able to perform their routine task in utmost skillful manner. The lizard is capable of identifying slowly varying features and able to trap the insects with more admiring skill set. The Lizard Learning Algorithm (LLA) was proposed for tracking invariant features which uses modified slow feature analysis. The article covers mathematical treatment for the slow feature analysis, proposed modification, higher order neural network training and ORL database for experimentation purpose. The results are most pleasing compared to conventional classifiers for the invariant features
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom