Predictive Autonomicity of Web Services in the MAWeS Framework
Author(s) -
Emilio P. Mancini,
Massimiliano Rak,
Roberto Torella,
Umberto Villano
Publication year - 2006
Publication title -
journal of computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.161
H-Index - 28
eISSN - 1552-6607
pISSN - 1549-3636
DOI - 10.3844/jcssp.2006.513.520
Subject(s) - computer science , world wide web
In Web Services designs classical optimization techniques are not applicable. A possible solution to guarantee critical requirements is the use of an autonomic architecture, able to auto-configure and to auto-tune. This study presents MAWeS (MetaPL/HeSSE Autonomic Web Services), a framework whose aim is to support the development of self-optimizing predictive autonomic systems for Web service architectures. It adopts a simulation-based methodology, which allows to predict system performance in different status and load conditions. The predicted results are used for a feedforward control of the system, which self-tunes before the new conditions and the subsequent performance losses are actually observed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom