z-logo
open-access-imgOpen Access
Towards a Scalable File System on Computer Clusters Using Declustering
Author(s) -
Vu Anh Nguyen,
Samuel Pierre,
Dougoukolo Konare
Publication year - 2005
Publication title -
journal of computer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.161
H-Index - 28
eISSN - 1552-6607
pISSN - 1549-3636
DOI - 10.3844/jcssp.2005.363.368
Subject(s) - computer science , scalability , file system , database , operating system , distributed computing , human–computer interaction
This study addresses the scalability issues involving file systems as critical components of computer clusters, especially for commercial applications. Given that wide striping is an effective means of achieving scalability as it warrants good load balancing and allows node cooperation, we choose to implement a new data distribution scheme in order to achieve the scalability of computer clusters. We suggest combining both wide striping and replication techniques using a new data distribution technique based on “chained declustering”. Thus, we suggest a complete architecture, using a cluster of clusters, whose performance is not limited by the network and can be adjusted with one-node precision. In addition, update costs are limited as it is not necessary to redistribute data on the existing nodes every time the system is expanded. The simulations indicate that our data distribution technique and our read algorithm balance the load equally amongst all the nodes of the original cluster and the additional ones. Therefore, the scalability of the system is close to the ideal scenario: once the size of the original cluster is well defined, the total number of nodes in the system is no longer limited, and the performance increases linearly

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom