z-logo
open-access-imgOpen Access
Fracture and springback on Double Bulge Tube Hydro-Forming
Author(s) -
Faramarz Djavanroodi,
M. Gheisary
Publication year - 2008
Publication title -
american journal of applied sciences
Language(s) - English
Resource type - Journals
eISSN - 1554-3641
pISSN - 1546-9239
DOI - 10.3844/ajassp.2008.1041.1046
Subject(s) - fracture (geology) , materials science , tube (container) , structural engineering , bulge , composite material , mechanics , engineering , computer science , physics , stars , computer vision
This research aims to establish a basic understanding of Double Bulge Tube Hydro-Form processing of stainless steel deep drawn cups. The method is briefly reviewed by carrying out experimental tests and Finite element analysis. By measuring bulge height in both formed curves by Coordinate measuring machine (CMM) and thickness variation specimen by Ulterasonic thickness measurment device (UTM), it has been shown that maximum thinness occured where the bending is maximized. A finite element model is constructed to simulate the Double Bulge Tube Hydro Forming process and asses the influence of friction cofficient, tube Material properties and springback. It has been shown that material hardening coefficient had the most significant influence on formability characteristics during double bulge tube hydroforming. Also it is shown that springback has significant effect on tolerances of formed tube. Finally fracture strain was estimated by analytical method and compared with simulation results, also fracture location was predicted on Double Bulge Tube Hydro-Forming (DBTHF) by simulating the process

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here