Chemical Triphosphorylation of Oligonucleotides
Author(s) -
Grant A. L. Bare,
David P. Horning
Publication year - 2022
Publication title -
journal of visualized experiments
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/63877
Subject(s) - oligonucleotide , phosphoramidite , ribozyme , nucleic acid , rna , combinatorial chemistry , pyrophosphate , nucleotide , oligonucleotide synthesis , chemical synthesis , biochemistry , solid phase synthesis , chemical biology , chemistry , biology , enzyme , dna , in vitro , peptide , gene
The 5'-triphosphate is an essential nucleic acid modification found throughout all life and increasingly used as a functional modification of oligonucleotides in biotechnology and synthetic biology. Oligonucleotide 5'-triphosphates have historically been prepared in vitro by enzymatic methods. However, these methods are limited to natural RNA oligonucleotides, have strong sequence preferences, and tend to produce heterogeneous products. New methods of chemical triphosphorylation complement both the reduced cost of automated oligonucleotide synthesis by phosphoramidite chemistry and the diverse range of nucleotide modifications now available. Thus, the synthesis of oligonucleotide triphosphates of arbitrary sequence and length, and optionally containing various nonnatural modifications, is now accessible. This paper presents the appropriate methods and techniques for chemical triphosphorylation of oligonucleotides using salicyl phosphorochloridite and pyrophosphate. This method uses commercially available reagents, is compatible with most oligonucleotides prepared by standard solid-phase synthesis methods, and can be completed in 2 h following oligonucleotide synthesis, before deprotection and purification. Two uses of chemically triphosphorylated oligonucleotides as substrates for catalytic RNA enzymes are demonstrated, including the synthesis of a mirror-image version of the hammerhead ribozyme from nonbiological L-RNA triphosphates.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom