Mass-Sensitive Particle Tracking to Characterize Membrane-Associated Macromolecule Dynamics
Author(s) -
Frederik Steiert,
Tamara Heermann,
Nikolas Hundt,
Petra Schwille
Publication year - 2022
Publication title -
journal of visualized experiments
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/63583
Subject(s) - membrane , macromolecule , millisecond , tracking (education) , chemical physics , resolution (logic) , chemistry , nanoparticle tracking analysis , biological system , biophysics , nanotechnology , analytical chemistry (journal) , materials science , chromatography , physics , biology , computer science , biochemistry , psychology , pedagogy , microrna , astronomy , artificial intelligence , microvesicles , gene
Short-lived or transient interactions of macromolecules at and with lipid membranes, an interface where a multitude of essential biological reactions take place, are inherently difficult to assess with standard biophysical methods. The introduction of mass-sensitive particle tracking (MSPT) constitutes an important step toward a thorough quantitative characterization of such processes. Technically, this was made possible through the advent of interferometric scattering microscopy (iSCAT)-based mass photometry (MP). When the background removal strategy is optimized to reveal the two-dimensional motion of membrane-associated particles, this technique allows the real-time analysis of both diffusion and molecular mass of unlabeled macromolecules on biological membranes. Here, a detailed protocol to perform and analyze mass-sensitive particle tracking of membrane-associated systems is described. Measurements performed on a commercial mass photometer achieve time resolution in the millisecond regime and, depending on the MP system, a mass detection limit down to 50 kDa. To showcase the potential of MSPT for the in-depth analysis of membrane-catalyzed macromolecule dynamics in general, results obtained for exemplary protein systems such as the native membrane interactor annexin V are presented.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom