Imaging Dendritic Spines in <em>Caenorhabditis elegans</em>
Author(s) -
Andrea Cuentas-Condori,
D. M. Miller
Publication year - 2021
Publication title -
journal of visualized experiments
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/62676
Subject(s) - dendritic spine , caenorhabditis elegans , neuroscience , biology , spine (molecular biology) , calcium imaging , postsynaptic potential , cholinergic , gabaergic , dendritic filopodia , microbiology and biotechnology , inhibitory postsynaptic potential , calcium , chemistry , gene , genetics , receptor , hippocampal formation , organic chemistry
Dendritic spines are specialized sites of synaptic innervation modulated by activity and serve as substrates for learning and memory. Recently, dendritic spines have been described for DD GABAergic neurons as the input sites from presynaptic cholinergic neurons in the motor circuit of Caenorhabditis elegans. This synaptic circuit can now serve as a powerful new in vivo model of spine morphogenesis and function that exploits the facile genetics and ready accessibility of C. elegans to live-cell imaging. This protocol describes experimental strategies for assessing DD spine structure and function. In this approach, a super-resolution imaging strategy is used to visualize the intricate shapes of actin-rich dendritic spines. To evaluate the DD spine function, the light-activated opsin, Chrimson, stimulates the presynaptic cholinergic neurons, and the calcium indicator, GCaMP, reports the evoked calcium transients in postsynaptic DD spines. Together, these methods comprise powerful approaches for identifying genetic determinants of dendritic spines in C. elegans that could also direct spine morphogenesis and function in the brain.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom