z-logo
open-access-imgOpen Access
Monitoring Protein-Ligand Interactions in Human Cells by Real-Time Quantitative In-Cell NMR using a High Cell Density Bioreactor
Author(s) -
Letizia Barbieri,
Enrico Luchinat
Publication year - 2021
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/62323
Subject(s) - bioreactor , ligand (biochemistry) , nuclear magnetic resonance spectroscopy , context (archaeology) , biophysics , transverse relaxation optimized spectroscopy , cell , chemistry , intracellular , biological system , analytical chemistry (journal) , fluorine 19 nmr , chromatography , biochemistry , biology , receptor , paleontology , organic chemistry
In-cell NMR is a unique approach to observe the structural and dynamic properties of biological macromolecules at atomic resolution directly in living cells. Protein folding, chemical modifications, and conformational changes induced by ligand binding can be observed. Therefore, this method has great potential in the context of drug development. However, the short lifetime of human cells confined in the NMR spectrometer limits the application range of in-cell NMR. To overcome this issue, NMR bioreactors are employed that can greatly improve the cell sample stability over time and, importantly, enable the real-time recording of in-cell NMR spectra. In this way, the evolution of processes such as ligand penetration and binding to the intracellular protein target can be monitored in real time. Bioreactors are often limited by low cell viability at high cell numbers, which results in a trade-off between the overall sensitivity of the experiment and cell viability. We recently reported an NMR bioreactor that maintains a high number of human cells metabolically active for extended periods of time, up to 72 h. This setup was applied to monitor protein-ligand interactions and protein chemical modification. We also introduced a workflow for quantitative analysis of the real-time NMR data, based on multivariate curve resolution. The method provides concentration profiles of the chemical species present in the cells as a function of time, which can be further analyzed to obtain relevant kinetic parameters. Here we provide a detailed description of the NMR bioreactor setup and its application to monitoring protein-ligand interactions in human cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom