Cryo-Electron Microscopic Grid Preparation for Time-Resolved Studies using a Novel Robotic System, Spotiton
Author(s) -
William C. Budell,
Luis Allegri,
Venkat Dandey,
Clinton S. Potter,
Bridget Carragher
Publication year - 2021
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/62271
Subject(s) - troubleshooting , grid , workflow , focus (optics) , computer science , sample (material) , nanotechnology , cryo electron microscopy , biological system , materials science , chemistry , physics , biology , biophysics , mathematics , optics , chromatography , geometry , database , operating system
The capture of short-lived molecular states triggered by the early encounter of two or more interacting particles continues to be an experimental challenge of great interest to the field of cryo-electron microscopy (cryo-EM). A few methodological strategies have been developed that support these "time-resolved" studies, one of which, Spotiton-a novel robotic system-combines the dispensing of picoliter-sized sample droplets with precise temporal and spatial control. The time-resolved Spotiton workflow offers a uniquely efficient approach to interrogate early structural rearrangements from minimal sample volume. Fired from independently controlled piezoelectric dispensers, two samples land and rapidly mix on a nanowire EM grid as it plunges toward the cryogen. Potentially hundreds of grids can be prepared in rapid succession from only a few microliters of a sample. Here, a detailed step-by-step protocol of the operation of the Spotiton system is presented with a focus on troubleshooting specific problems that arise during grid preparation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom