z-logo
open-access-imgOpen Access
Probing mRNA Kinetics in Space and Time in <em>Escherichia coli</em> using Two-Color Single-Molecule Fluorescence In Situ Hybridization
Author(s) -
SangJin Kim,
Kavya Vaidya
Publication year - 2020
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/61520
Subject(s) - microbiology and biotechnology , messenger rna , transcription (linguistics) , in situ hybridization , biology , escherichia coli , fluorescence in situ hybridization , in situ , gene expression , kinetics , chemistry , gene , biochemistry , physics , philosophy , linguistics , organic chemistry , quantum mechanics , chromosome
Single-molecule fluorescence in situ hybridization (smFISH) allows for counting the absolute number of mRNAs in individual cells. Here, we describe an application of smFISH to measure the rates of transcription and mRNA degradation in Escherichia coli. As smFISH is based on fixed cells, we perform smFISH at multiple time points during a time-course experiment, i.e., when cells are undergoing synchronized changes upon induction or repression of gene expression. At each time point, sub-regions of an mRNA are spectrally distinguished to probe transcription elongation and premature termination. The outcome of this protocol also allows for analyzing intracellular localization of mRNAs and heterogeneity in mRNA copy numbers among cells. Using this protocol many samples (~50) can be processed within 8 h, like the amount of time needed for just a few samples. We discuss how to apply this protocol to study the transcription and degradation kinetics of different mRNAs in bacterial cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom