z-logo
open-access-imgOpen Access
High-Throughput Method for Measuring Alcohol Sedation Time of Individual <em>Drosophila melanogaster</em>
Author(s) -
Tatum N. Sass,
Rebecca A. MacPherson,
Trudy F. C. Mackay,
Robert R. H. Anholt
Publication year - 2020
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/61108
Subject(s) - drosophila melanogaster , sedation , drosophila (subgenus) , alcohol , ethanol , biology , drosophilidae , toxicology , medicine , pharmacology , genetics , gene , biochemistry
Drosophila melanogaster provides an excellent model to study the genetic underpinnings of alcohol sensitivity. In contrast to studies in human populations, the Drosophila model allows strict control over genetic background, and virtually unlimited numbers of individuals of the same genotype can be reared rapidly under well-controlled environmental conditions without regulatory restrictions and at relatively low cost. Flies exposed to ethanol undergo physiological and behavioral changes that resemble human alcohol intoxication, including loss of postural control, sedation, and development of tolerance. Here, we describe a simple, low-cost, high-throughput assay for assessing alcohol sedation sensitivity in large numbers of single flies. The assay is based on video recording of single flies introduced without anesthesia in 24-well cell culture plates in a set-up that enables synchronous initiation of alcohol exposure. The system enables a single person to collect individual ethanol sedation data on as many as 2,000 flies within an 8 h work period. The assay can, in principle, be extended to assess the effects of exposure to any volatile substance and applied to measure effects of acute toxicity of volatiles on other insects, including other fly species.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom