Universal and Efficient Electroporation Protocol for Genetic Engineering of Gastrointestinal Organoids
Author(s) -
Anne-Marlen Gaebler,
Alexander Hennig,
Katharina Buczolich,
Jürgen Weitz,
Thilo Welsch,
Daniel E. Stange,
Kristin Pape
Publication year - 2020
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/60704
Subject(s) - electroporation , organoid , transfection , microbiology and biotechnology , plasmid , computational biology , biology , computer science , cell culture , dna , gene , genetics
Electroporation is a common method for transfection with different kinds of molecules by electrical permeabilization of the plasma membrane. With the increasing use of organoids as a culturing method for primary patient material in the last years, efficient transfer methods of components for genetic engineering in this 3D culture system are in need. Especially for organoids, the efficiency of genetic manipulations depends on a successful transfection. Thus, this protocol was developed to facilitate the electroporation of organoids and to prove its universal functionality in different entities. Human colorectal, pancreatic, hepatic and gastric cancer organoids were successfully electroporated with small and large plasmids in comparison. Based on GFP encoding vectors, the transfection efficiency was determined by FACS. No extensive preparation of the cells or special, cost-intensive electroporation buffers are necessary, and the protocol can be performed within one day.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom