z-logo
open-access-imgOpen Access
Multicolor 3D Printing of Complex Intracranial Tumors in Neurosurgery
Author(s) -
Michael Kosterhon,
Meik Neufurth,
Axel Neulen,
Lea Schäfer,
Jens Conrad,
Sven R. Kantelhardt,
Wernér E.G. Müller,
Florian Ringel
Publication year - 2020
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/60471
Subject(s) - computer science , 3d printing , computer vision , colored , artificial intelligence , computer graphics (images) , segmentation , biomedical engineering , engineering drawing , materials science , medicine , engineering , composite material
Three-dimensional (3D) printing technologies offer the possibility of visualizing patient-specific pathologies in a physical model of correct dimensions. The model can be used for planning and simulating critical steps of a surgical approach. Therefore, it is important that anatomical structures such as blood vessels inside a tumor can be printed to be colored not only on their surface, but throughout their whole volume. During simulation this allows for the removal of certain parts (e.g., with a high-speed drill) and revealing internally located structures of a different color. Thus, diagnostic information from various imaging modalities (e.g., CT, MRI) can be combined in a single compact and tangible object. However, preparation and printing of such a fully colored anatomical model remains a difficult task. Therefore, a step-by-step guide is provided, demonstrating the fusion of different cross-sectional imaging data sets, segmentation of anatomical structures, and creation of a virtual model. In a second step the virtual model is printed with volumetrically colored anatomical structures using a plaster-based color 3D binder jetting technique. This method allows highly accurate reproduction of patient-specific anatomy as shown in a series of 3D-printed petrous apex chondrosarcomas. Furthermore, the models created can be cut and drilled, revealing internal structures that allow for simulation of surgical procedures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom