z-logo
open-access-imgOpen Access
Detection of Tissue-resident Bacteria in Bladder Biopsies by 16S rRNA Fluorescence In Situ Hybridization
Author(s) -
Michael L. Neugent,
Jashkaran Gadhvi,
Kelli L. Palmer,
Philippe E. Zimmern,
Nicole J. De Nisco
Publication year - 2019
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/60458
Subject(s) - in situ hybridization , biology , bacteria , fluorescence in situ hybridization , 16s ribosomal rna , in situ , ribosomal rna , pathology , microbiology and biotechnology , gene expression , gene , genetics , chemistry , medicine , organic chemistry , chromosome
Visualization of the interaction of bacteria with host mucosal surfaces and tissues can provide valuable insight into mechanisms of pathogenesis. While visualization of bacterial pathogens in animal models of infection can rely on bacterial strains engineered to express fluorescent proteins such as GFP, visualization of bacteria within the mucosa of biopsies or tissue obtained from human patients requires an unbiased method. Here, we describe an efficient method for the detection of tissue-associated bacteria in human biopsy sections. This method utilizes fluorescent in situ hybridization (FISH) with a fluorescently labeled universal oligonucleotide probe for 16S rRNA to label tissue-associated bacteria within bladder biopsy sections acquired from patients suffering from recurrent urinary tract infection. Through use of a universal 16S rRNA probe, bacteria can be detected without prior knowledge of species, genera, or biochemical characteristics, such as lipopolysaccharide (LPS), that would be required for detection by immunofluorescence experiments. We describe a complete protocol for 16S rRNA FISH from biopsy fixation to imaging by confocal microscopy. This protocol can be adapted for use in almost any type of tissue and represents a powerful tool for the unbiased visualization of clinically-relevant bacterial-host interactions in patient tissue. Furthermore, using species or genera-specific probes, this protocol can be adapted for the detection of specific bacterial pathogens within patient tissue.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom