Synthesis of Information-bearing Peptoids and their Sequence-directed Dynamic Covalent Self-assembly
Author(s) -
Samuel C. Leguizamon,
Abdulla F. Alqubati,
Timothy F. Scott
Publication year - 2020
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/60442
Subject(s) - peptoid , chemistry , covalent bond , electrospray ionization , dynamic covalent chemistry , combinatorial chemistry , aldehyde , monomer , mass spectrometry , trifluoromethanesulfonate , amine gas treating , peptide , chromatography , molecule , organic chemistry , supramolecular chemistry , polymer , biochemistry , catalysis
This protocol presents the use of Lewis acidic multi-role reagents to circumvent kinetic trapping observed during the self-assembly of information-encoded oligomeric strands mediated by paired dynamic covalent interactions in a manner mimicking the thermal cycling commonly employed for the self-assembly of complementary nucleic acid sequences. Primary amine monomers bearing aldehyde and amine pendant moieties are functionalized with orthogonal protecting groups for use as dynamic covalent reactant pairs. Using a modified automated peptide synthesizer, the primary amine monomers are encoded into oligo(peptoid) strands through solid-phase submonomer synthesis. Upon purification by high-performance liquid chromatography (HPLC) and characterization by electrospray ionization mass spectrometry (ESI-MS), sequence-specific oligomers are subjected to high-loading of a Lewis acidic rare-earth metal triflate which both deprotects the aldehyde moieties and affects the reactant pair equilibrium such that strands completely dissociate. Subsequently, a fraction of the Lewis acid is extracted, enabling annealing of complementary sequence-specific strands to form information-encoded molecular ladders characterized by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). The simple procedure outlined in this report circumvents kinetic traps commonly experienced in the field of dynamic covalent assembly and serves as a platform for the future design of robust, complex architectures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom