z-logo
open-access-imgOpen Access
Analyzing Tumor Gene Expression Factors with the CorExplorer Web Portal
Author(s) -
Shirley Pepke,
William M. Nelson,
Greg Ver Steeg
Publication year - 2019
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/60431
Subject(s) - kegg , computational biology , encyclopedia , context (archaeology) , computer science , gene , gene expression , genome , ontology , biology , gene ontology , genetics , paleontology , philosophy , epistemology , library science
Differential gene expression analysis is an important technique for understanding disease states. The machine learning algorithm CorEx has shown utility in analyzing differential expression of groups of genes in tumor RNA-seq in a way that may be helpful for advancing precision oncology. However, CorEx produces many factors that can be challenging to analyze and connect to existing understanding. To facilitate such connections, we have built a website, CorExplorer, that allows users to interactively explore the data and answer common questions related to its analysis. We trained CorEx on RNA-seq gene expression data for four tumor types: ovarian, lung, melanoma, and colorectal. We then incorporated corresponding survival, protein-protein interactions, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichments, and heatmaps into the website for association with the factor graph visualization. Here we employ example protocols to illustrate use of the database for comprehending the significance of the learned tumor factors in the context of this external data.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom