z-logo
open-access-imgOpen Access
Dissection of <em>Drosophila melanogaster</em> Flight Muscles for Omics Approaches
Author(s) -
Shao-Yen Kao,
Eleikonova,
Keshika Ravichandran,
Maria L. Spletter
Publication year - 2019
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/60309
Subject(s) - biology , myogenesis , myosin , drosophila melanogaster , computational biology , microbiology and biotechnology , alternative splicing , green fluorescent protein , bioinformatics , exon , myocyte , genetics , gene
Drosophila flight muscle is a powerful model to study diverse processes such as transcriptional regulation, alternative splicing, metabolism, and mechanobiology, which all influence muscle development and myofibrillogenesis. Omics data, such as those generated by mass spectrometry or deep sequencing, can provide important mechanistic insights into these biological processes. For such approaches, it is beneficial to analyze tissue-specific samples to increase both selectivity and specificity of the omics fingerprints. Here we present a protocol for dissection of fluorescent-labeled flight muscle from live pupae to generate highly enriched muscle samples for omics applications. We first describe how to dissect flight muscles at early pupal stages (<48 h after puparium formation [APF]), when the muscles are discernable by green fluorescent protein (GFP) labeling. We then describe how to dissect muscles from late pupae (>48 h APF) or adults, when muscles are distinguishable under a dissecting microscope. The accompanying video protocol will make these technically demanding dissections more widely accessible to the muscle and Drosophila research communities. For RNA applications, we assay the quantity and quality of RNA that can be isolated at different time points and with different approaches. We further show that Bruno1 (Bru1) is necessary for a temporal shift in myosin heavy chain (Mhc) splicing, demonstrating that dissected muscles can be used for mRNA-Seq, mass spectrometry, and reverse transcription polymerase chain reaction (RT-PCR) applications. This dissection protocol will help promote tissue-specific omics analyses and can be generally applied to study multiple biological aspects of myogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom