z-logo
open-access-imgOpen Access
Evaluating the Differentiation Capacity of Mouse Prostate Epithelial Cells Using Organoid Culture
Author(s) -
Preston D. Crowell,
Jenna M. Giafaglione,
Takao Hashimoto,
Johnny A. Diaz,
Andrew S. Goldstein
Publication year - 2019
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/60223
Subject(s) - organoid , prostate , biology , microbiology and biotechnology , ex vivo , epithelium , cellular differentiation , stem cell , basal (medicine) , cell culture , regeneration (biology) , organ culture , in vivo , pathology , in vitro , endocrinology , medicine , biochemistry , cancer , gene , insulin , genetics
The prostate epithelium is comprised predominantly of basal and luminal cells. In vivo lineage tracing has been utilized to define the differentiation capacity of mouse prostate basal and luminal cells during development, tissue-regeneration and transformation. However, evaluating cell-intrinsic and extrinsic regulators of prostate epithelial differentiation capacity using a lineage tracing approach often requires extensive breeding and can be cost-prohibitive. In the prostate organoid assay, basal and luminal cells generate prostatic epithelium ex vivo. Importantly, primary epithelial cells can be isolated from mice of any genetic background or mice treated with any number of small molecules prior to, or after, plating into three-dimensional (3D) culture. Sufficient material for evaluation of differentiation capacity is generated after 7-10 days. Collection of basal-derived and luminal-derived organoids for (1) protein analysis by Western blot and (2) immunohistochemical analysis of intact organoids by whole-mount confocal microscopy enables researchers to evaluate the ex vivo differentiation capacity of prostate epithelial cells. When used in combination, these two approaches provide complementary information about the differentiation capacity of prostate basal and luminal cells in response to genetic or pharmacological manipulation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom