A Task for Assessing the Impact of a Partner on the Speed and Accuracy of Motor Performance in Rats
Author(s) -
Yayoi Sekiguchi,
Toshimichi Hata
Publication year - 2019
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/60176
Subject(s) - lever , task (project management) , computer science , simulation , analysis of variance , association (psychology) , repeated measures design , variance (accounting) , psychology , physical medicine and rehabilitation , statistics , machine learning , mathematics , engineering , medicine , mechanical engineering , systems engineering , psychotherapist , accounting , business
To our knowledge, no study has examined the effect of mere presence on accuracy of performance in animals. Therefore, we developed an experimental task to measure rats' motor performance (speed and accuracy) in a social condition. Rats were trained to run on a runway and pull down a lever at the end of the runway. In testing, rats performed the task solitarily (single) or in the presence of a confederate rat beyond the lever (pair or a social condition). As indices of the performance speed, we measured the time needed to start running, run through the runway, and pull down the lever. As the index of performance accuracy, we counted the number of trials in which rats could pull down the lever during their first attempt. One-way and two-way repeated-measure analyses of variance were used to analyze the data. This run-and-pull task enabled us to examine the effect of the presence of another conspecific on both speed and accuracy of motor performance in one experiment. The results showed that rats performed the task faster but less accurately in pair sessions than in single sessions. This protocol would be a valid animal model to examine the effect of mere presence on speed and accuracy of motor performance in rats.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom