z-logo
open-access-imgOpen Access
Quantification of Monocyte Chemotactic Activity In Vivo and Characterization of Blood Monocyte Derived Macrophages
Author(s) -
Yong Joo Ahn,
Luxi Wang,
Reto Asmis
Publication year - 2019
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/59706
Subject(s) - monocyte , macrophage , chemotaxis , immunology , western blot , biology , priming (agriculture) , microbiology and biotechnology , in vitro , receptor , biochemistry , gene , botany , germination
Tissue homeostasis and repair are critically dependent on the recruitment of monocyte-derived macrophages. Both under- and over-recruitment of monocyte-derived macrophages can impair wound healing. We showed that high fat and high sugar diets promote monocyte priming and dysfunction, converting healthy blood monocytes into a hyper chemotactic phenotype poised to differentiate into macrophages with dysregulated activation profiles and impaired phenotypic plasticity. The over-recruitment of monocyte-derived macrophages and recruitment of macrophages with dysregulated activation profiles is believed to be a major contributor to the development of chronic inflammatory diseases associated with metabolic disorders, including atherosclerosis and obesity. The goal of this protocol is to quantify the chemotactic activity of blood monocytes as a biomarker for monocyte priming and dysfunction and to characterize the macrophage phenotype blood monocytes are poised to differentiate into in these mouse models. Using single cell Western blot analysis, we show that after 24 h 33%of cells recruited into MCP-1-loaded basement membrane-derived gel plugs injected into mice are monocytes and macrophages; 58% after day 3. However, on day 5, monocyte and macrophage numbers were significantly decreased. Finally, we show that this assays also allows for the isolation of live macrophages from the surgically retrieved basement membrane-derived gel plugs, which can then be subjected to subsequent characterization by single cell Western blot analysis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom