Enhanced Rabies Surveillance Using a Direct Rapid Immunohistochemical Test
Author(s) -
Erin M. Patrick,
Brian Bjorklund,
Jordona D. Kirby,
Kathleen M. Nelson,
Richard B. Chipman,
Charles E. Rupprecht
Publication year - 2019
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/59416
Subject(s) - rabies , immunohistochemistry , virology , biology , medicine , immunology
Laboratory-based surveillance is integral for rabies prevention, control and management efforts. While the DFA is the gold standard for rabies diagnosis, there is a need to validate additional diagnostic techniques to improve rabies surveillance, particularly in developing countries. Here, we present a standard protocol for the DRIT as an alternative, laboratory or field-based testing option that uses light microscopy as compared to the DFA. Touch impressions of brain tissue collected from suspect animals are fixed in 10% buffered formalin. The DRIT uses rabies virus-specific monoclonal or polyclonal antibodies (conjugated to biotin), a streptavidin-peroxidase enzyme, and a chromogen reporter (such as acetyl 3-amino-9-ethylcarbazole) to detect viral inclusions within infected tissue. In approximately 1 h, a brain tissue sample can be tested and interpreted by the DRIT. Evaluation of suspect animal brains tested from a variety of species in North America, Asia, Africa, and Europe have illustrated high sensitivity and specificity by the DRIT approaching 100% with results compared to DFA. Since 2005, the United States Department of Agriculture's Wildlife Services (USDA WS) program has conducted large-scale enhanced rabies surveillance efforts using the DRIT to test >94,000 samples collected from wildlife in strategic rabies management areas. The DRIT provides a powerful, economical tool for rabies diagnosis that can be used by laboratorians and field biologists to improve current rabies surveillance, prevention and control programs globally.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom