High-throughput Measurement of <em>Dictyostelium discoideum</em> Macropinocytosis by Flow Cytometry
Author(s) -
Thomas D. Williams,
Robert R. Kay
Publication year - 2018
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/58434
Subject(s) - pinocytosis , dictyostelium discoideum , flow cytometry , microbiology and biotechnology , dictyostelium , biology , cytometry , chemistry , biophysics , cell , biochemistry , endocytosis , gene
Large-scale non-specific fluid uptake by macropinocytosis is important for the proliferation of certain cancer cells, antigen sampling, host cell invasion and the spread of neurodegenerative diseases. The commonly used laboratory strains of the amoeba Dictyostelium discoideum have extremely high fluid uptake rates when grown in nutrient medium, over 90% of which is due to macropinocytosis. In addition, many of the known core components of mammalian macropinocytosis are also present, making it an excellent model system for studying macropinocytosis. Here, the standard technique to measure internalized fluid using fluorescent dextran as a label is adapted to a 96-well plate format, with the samples analyzed by flow cytometry using a high-throughput sampling (HTS) attachment. Cells are fed non-quenchable fluorescent dextran for a pre-determined length of time, washed by immersion in ice-cold buffer and detached using 5 mM sodium azide, which also stops exocytosis. Cells in each well are then analyzed by flow cytometry. The method can also be adapted to measure membrane uptake and phagocytosis of fluorescent beads or bacteria. This method was designed to allow measurement of fluid uptake by Dictyostelium in a high-throughput, labor and resource efficient manner. It allows simultaneous comparison of multiple strains (e.g. knockout mutants of a gene) and conditions (e.g. cells in different media or treated with different concentrations of inhibitor) in parallel and simplifies time-courses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom