z-logo
open-access-imgOpen Access
Enhancement Method of Surface Acoustic Wave-Atomizer Efficiency for Olfactory Display
Author(s) -
Takamichi Nakamoto,
Sami Ollila,
Shingo Kato,
Haining Li,
Guiping Qi
Publication year - 2018
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/58409
Subject(s) - substrate (aquarium) , materials science , surface acoustic wave , coating , amorphous solid , olfaction , solenoid , polymer substrate , composite material , adhesion , layer (electronics) , optoelectronics , nanotechnology , acoustics , chemistry , mechanical engineering , oceanography , physics , organic chemistry , neuroscience , engineering , biology , geology
Since olfaction is an important sense in human interfaces, we have developed an olfactory display using a surface acoustic wave (SAW) atomizer and micro-dispensers. In this olfactory display, the efficiency of atomization is important in order to avoid smell persistence problems often encountered in human olfactory interfaces. Thus, the SAW device is coated with amorphous Teflon film to change the substrate nature from hydrophilic to hydrophobic. It is also necessary to silanize the piezoelectric substrate surface prior to Teflon coating to enhance the adhesion of the film. A dip coating method was adopted to obtain uniform coating on the substrate. The high-speed solenoid valve was used as micro-dispenser to spout a liquid droplet to the SAW device surface since its accuracy and reproducibility were high. Then, the atomization became easier on the hydrophobic substrate. In this study, the amorphous Teflon coating for minimizing the remaining liquid on the substrate after atomization was studied. The goal of the protocol described here is to show the methods for coating a SAW device surface with amorphous Teflon film and generating the smell using the SAW atomizer and a micro-dispenser, followed by a sensory test.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom