An Anaerobic Biosensor Assay for the Detection of Mercury and Cadmium
Author(s) -
Benjamin Stenzler,
Jessica Gaudet,
Alexandre J. Poulain
Publication year - 2018
Publication title -
journal of visualized experiments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.596
H-Index - 91
ISSN - 1940-087X
DOI - 10.3791/58324
Subject(s) - bioavailability , biosensor , biomagnification , mercury (programming language) , environmental chemistry , anoxic waters , chemistry , cadmium , bioaccumulation , biology , biochemistry , bioinformatics , organic chemistry , computer science , programming language
Mercury (Hg) bioavailability to microbes is a key step to toxic Hg biomagnification in food webs. Cadmium (Cd) transformations and bioavailability to bacteria control the amount that will accumulate in staple food crops. The bioavailability of these metals is dependent on their speciation in solution, but more particularly under anoxic conditions where Hg is methylated to toxic monomethylmercury (MeHg) and Cd persists in the rhizosphere. Whole-cell microbial biosensors give a quantifiable signal when a metal enters the cytosol and therefore are useful tools to assess metal bioavailability. Unfortunately, most biosensing efforts have so far been constrained to oxic environments due to the limited ability of existing reporter proteins to function in the absence of oxygen. In this study, we present our effort to develop and optimize a whole-cell biosensor assay capable of functioning anaerobically that can detect metals under anoxic condition in quasi-real time and within hours. We describe how the biosensor can help assess how chemical variables relevant to the environmental cycling of metals affect their bioavailability. The following protocol includes methods to (1) prepare Hg and Cd standards under anoxic conditions, (2) prepare the biosensor in the absence of oxygen, (3) design and execute an experiment to determine how a series of variable affects Hg or Cd bioavailability, and (4) to quantify and interpret biosensor data. We show the linear ranges of the biosensors and provide examples showing the method's ability to distinguish between metal bioavailability and toxicity by utilizing both metal-inducible and constitutive strains.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom